

Heynova (Shanghai) New Material Technology CO., Ltd

Building 3, Zhangjiang Microelectronics Port, No. 690 Bibo Road, Pudong New Area, Shanghai

Tel: +86-178-2110-2608 Mail: info@heynovachem.com
Web site: www.heynovachem.com
Post Code: 201203

PI Rods

Polyimide rod is a high-performance polymer material with polyimide (PI) as the main component, which is made into rod form by high temperature and high pressure process. Its molecular structure contains imide-based chain links, belonging to the aromatic heterocyclic polymer compounds, with high temperature resistance, high strength, excellent insulation and other characteristics.

Core advantages

• High temperature stability

Wide range of long-term use temperature (-200°C to 300°C), resistant to extreme high temperature environment, no significant melting point.

Excellent insulation properties

Low dielectric constant (about 3.4), high dielectric strength, suitable for high-voltage electrical and electronic equipment.

• Excellent mechanical properties

Tensile strength up to 343 MPa (e.g. Kinel 5504), high hardness, good wear resistance, excellent dimensional stability.

• Chemical resistance and self-lubrication

Resistant to acid, alkali and solvent corrosion, some modified materials have self-lubricating properties, reducing friction loss.

Environmental protection and safety

Non-toxic, self-extinguishing, low smoke emission during combustion, in line with environmental requirements.

Main Applications

Aerospace

Used for manufacturing high temperature structural parts, engine parts, seals, etc., which are resistant to extreme temperature and high load environment. For example: spacecraft heat insulation parts, rocket parts, etc.

• Electronic information industry

Used as an insulating material for circuit boards, electronic packages, etc., to meet the insulating needs of high-voltage, high-frequency environments. Examples: FPC (flexible circuit board) substrates, electronic component support structures.

Biomedical field

Used for medical device components due to its good biocompatibility and sterilization resistance. Examples: surgical instruments, medical device housings.

• Automotive industry

Used for high-temperature and high-pressure parts such as engine covers and brake systems to enhance durability and thermal stability.

• Precision instruments and machinery

Used as wear-resistant, low-friction bearings, gears and other transmission parts for high-precision equipment.

Heynova (Shanghai) New Material Technology CO., Ltd

Building 3, Zhangjiang Microelectronics Port, No. 690 Bibo Road, Pudong New Area, Shanghai


Tel: +86-178-2110-2608 Mail: info@heynovachem.com
Web site: www.heynovachem.com
Post Code: 201203

Summary

Polyimide rods have become key materials in aerospace, electronics, automotive and other fields by virtue of their unique comprehensive performance. Its high-temperature stability, insulation and mechanical strength make it a significant advantage in replacing traditional metal materials (such as aluminum, bronze), while meeting the demand for lightweight and high performance.

Item	Acceptance requirements	Unit
Color	Brownish yellow	/
Rockwell hardness	45-65	HRE
Notch impact strength	≥100	Kj/m^2
Tensile strength	≥100	MPa
Elongation at break	≥8.0	0/0
Bending strength	≥100	MPa
Modulus of elasticity	≥2600	MPa
Density	1.41	g/cm ³
Water absorption	0.16	%
Surface resistivity	$> 10^{12}$	Ω/sq

